114. Photogeneration of Carbon Monoxide and of Hydrogen *via* Simultaneous Photochemical Reduction of Carbon Dioxide and Water by Visible-Light Irradiation of Organic Solutions Containing Tris(2,2'-bipyridine)ruthenium(II) and Cobalt(II) Species as Homogeneous Catalysts

by Raymond Ziessel, Jeannot Hawecker, and Jean-Marie Lehn*

Institut Le Bel, Université Louis Pasteur, 4, rue Blaise Pascal, F-67000 Strasbourg¹)

(5.V.86)

CO and H₂ are photogenerated simultaneously by visible-light irradiation of systems containing a *photosensitizer*, the [Ru(bpy)₃]²⁺ complex, *Co(II) species* as homogeneous catalysts, which mediate CO₂ and H₂O reduction by intermediate formation of Co(1), a tertiary amine as *electron donor*, which provides the electrons for the reduction, and an organic solvent which also facilitates dissolution of CO₂. The efficiency of (CO + H₂) gas production and the selectivity CO/H₂ markedly depend upon the composition of the medium, the nature of the tertiary amine, the solvent, and the ligand of the Co ions. 2,9-Dimethyl-1,10-phenanthroline is particularly effective in promoting CO and H₂ formation, giving a quantum yield of 7.7% in (CO + H₂) (1.2% for CO and 6.5% for H₂). The process consists of two catalytic cycles: a photocatalytic cycle for the Ru complex and a double dark reaction pathway for the Co species; oxidative and/or reductive quenching of the excited state of the photosensitizer lead to the formation of Co(I) species which reduce either CO₂ or H₂O to CO or H₂, respectively.

Introduction. – Although there is considerable interest in the development of CO_2 chemistry (for recent reviews on CO_2 activation, see [1]) [2], little research has been devoted to the photoreduction of CO_2 . Reported experiments involve irradiation of aqueous solutions of transition metal ions [2a] [3] or of organic dyes [4], irradiation of semiconductor crystals [5a] or powders [5b] as well as photoelectrochemical means of reducing CO_2 [6].

Over the last years, we have described three homogeneous catalytic systems which perform photochemical CO₂ reduction [7]: the first allows the simultaneous reduction of CO₂ and H₂O into CO and H₂, respectively, based on [Ru(bpy)₃]Cl₂ (bpy = 2,2'-bipyridine) as photosensitizer and Co(II) ions or Co(II) complexes as catalyst [8], the second is highly efficient and selective for the reduction of CO₂ into CO and based on a single complex *fac*-[Re(bpy)(CO)₃]X (X = Cl, Br) acting both as photosensitizer and as catalyst [9], and the third, based on Ru complexes, performs the photochemical reduction of CO₂ to formate [10]. In our initial reports [8] [9], we described the simultaneous photogeneration of a 'synthesis gas' mixture (CO + H₂) with a system containing a photosensitizer ([RuL₃]²⁺, L = 2,2'-bipyridine, 1,10-phenanthroline or derivatives thereof), a CO₂-reduction catalyst (solvated Co(II) ions or Co(II) complexes) and a tertiary amine as electron donor; this system catalytically reduced CO₂ to CO *via* a photogenerated Co(I) species with an efficiency (CO + H₂) and a selectivity (CO/H₂) dependent upon experi-

¹) UA 422 of the CNRS.

Exper.	Tertiary amine ^b)	Volume of CO ₂ dissolved [ml]	Volume of CO produced [ml]	Volume of H ₂ produced [ml]	CO + H ₂ [µmol]	CO/H ₂
1	Et ₃ N	800°)	0.13	0.05	7.5	2.4
2	Et ₃ N	- ^d)	~	0.82	34.2	_
3	Et ₃ N	-	-	0.17	7.1	
4 ^e)	Et ₃ N	800°)	0.05	0.15	8.3	0.3
5 ^f)	Et ₃ N	800°)	0.15	0.37	21.7	0.4
6 ^g)	Pr ₃ N	620 ^c)	2.36	1.12	145	2.1
7	Me ₃ N	200°)	-	0.06	2.5	_
8 ^g)	Bu ₃ N	320°)	0.43	0.28	29.3	1.5
9 ^g)	(Pentyl) ₃ N	260°)	0.12	0.05	6.8	2.4
10	Et ₃ N	200	_	1.04	43.2	
11 ^g)	Pr ₃ N	200	0.28	0.79	44.5	0.4
12 ^g)	Bu ₃ N	200	0.07	0.36	17.9	0.2
13 ^g)	(Pentyl) ₃ N	200	0.08	0.10	7.5	0.8
14 ^g)	Bu ₃ N	140	-	0.46	1.9	_
15 ⁸)	(i-Bu) ₃ N	140 ^c)	-	0.43	1.8	_
16	(i-Bu) ₂ NEt	660°)	0.33	2.20	105	0.2
17	TMEDA	200	0.01	1.92	80.3	-

Table 1. Generation of CO and H_2 by Photoreduction of CO₂ and H_2 O in Presence of Different Tertiary Alkylamines and Different Amounts of CO₂^a)

^a) Irradiation was carried out at 30° during 16 h with a 1000-W Xe-Hg lamp. The soln. (30 ml) contained [Ru(bpy)₃]²⁺ (4.7 × 10⁻⁴M), CoCl₂·6H₂O (1.5 × 10⁻³M), MeCN/tertiary amine/H₂O 3:1:1.

^b) TMEDA: N, N, N', N'-tetramethyl-ethylenediamine.

c) Soln. saturated with CO₂.

d) Formal pH adjusted to 8.6 with conc. HCl.

e) Control exper. performed without Co salt.

^f) 1.45 mM [Ru(bpy)₂]Cl₂ added in place of $CoCl_2 \cdot 6H_2O$.

g) In these experiments, the mixture separated into two phases after saturation with CO₂.

mental parameters. To investigate the factors which influence the reaction of CO_2 with reduced species (generated photochemically or electrochemically), we have undertaken a systematic study of the effects of changing the Co complex, the tertiary-amine donor, the photosensitizer and the medium composition (see *Tables 1* and 2). Results on the mechanistic aspects of the processes occurring in this system have also been obtained.

Photoreduction Experiments. – Our studies were carried out using two main systems. The first contained a photosensitizer $[Ru(bpy)_3]^{2+}$, a mediator $CoCl_2 \cdot 6H_2O$, and an electron donor, Et₃N. The solvent was an aquo-organic medium, MeCN/Et₃N/H₂O 3:1:1 saturated with CO₂. The second contained $[Ru(bpy)_3]^{2+}$, a Co(II) complex such as $[Co(bpy)_3]^{2+}$, 'triethanolamine' ((HOCH₂CH₂)₃N), and the solvent was either purely organic or an aquo-organic mixture (dimethylformamide (DMF)/H₂O 3:2 or DMF/H₂O/(HOCH₂CH₂)₃N 3:1:1) saturated with CO₂.

Irradiation of both systems with visible light ($\lambda > 400$ nm) catalytically produced H₂ and CO. The gas formed was analysed by GC, after calibration with samples of the pure gases (see Fig. 1). To determine the origin of the CO produced, some experiments were run with labelled ¹³CO₂ (90.5% enriched) and the gaseous products analysed by GC/MS. The results clearly showed that the CO produced came from the CO₂ introduced (Fig. 2). Both Exper. 1 and 23 gave 90% ¹³CO when labelled CO₂ was used. In Fig. 2a, the peaks at mass 29 correspond to ¹⁵NN and ¹³CO present in natural abundance. The low-intensity

Exper.	Tertiary amine	Volume of CO ₂ dissolved [ml]	Volume of CO produced [ml]	Volume of H ₂ produced [ml]	$CO + H_2$ [µmol]	CO/H ₂
18	(HOCH ₂ CH ₂) ₁ N	200	0.71	0.1	33.7	7.4
19	(HOCH ₂ CH ₂) ₂ NMe	200	0.09	1.32	58.5	0.1
20	(HOCH ₂ CH ₂)NMe ₂	200	-	0.06	2.4	-
21	(CH ₃ CH(OH)CH ₂) ₃ N	200	0.55	0.03	24.3	19.3
22	(HOCH ₂ CH ₂) ₃ N	150 ^b)	0.05	0.20	10.4	0.3
23	(HOCH ₂ CH ₂) ₃ N	150 ^b)	2.2	9.2	475	0.2
24°)	(HOCH ₂ CH ₂) ₃ N	150 ^b)	0.04	0.35	16.3	0.1
25 ^d)	(HOCH ₂ CH ₂) ₃ N	-	-	9.8	408	
26°)	(HOCH ₂ CH ₂) ₃ N	180 ^b)	4.3	3.0	304	1.4
27 ^f)	(HOCH ₂ CH ₂) ₃ N	150 ^b)	2.7	5.8	354	0.5
28 ^e) ^f)	(HOCH ₂ CH ₂) ₃ N	120	4.7	4.2	371	1.1
29	(HOCH ₂ CH ₂) ₂ NMe	200 ^b)	2.4	6.4	366	0.4
30	(HOCH ₂ CH ₂) ₃ N	160 ^b)	3.7	11.9	650	0.3
31	(HOCH ₂ CH ₂) ₃ N	160 ^b)	8.6	18.9	1146	0.5
32 ^e)	(HOCH ₂ CH ₂) ₃ N	160 ^b)	0.8	9.9	445	0.1
33	(HOCH ₂ CH ₂) ₃ N	150 ^b)	2.35	1.15	146	2.0
34	(HOCH ₂ CH ₂) ₃ N	150 ^b)	2.7	1.85	190	1.5

Table 2. Generation of CO and H_2 by Photoreduction of CO₂ and H_2O in Presence of Different Tertiary Hydroxylated Amines and Different Amounts of CO₂^a)

^a) Exper. 18-21 contained in 30 ml of soln.: [Ru(bpy)₃]²⁺ (4.7 × 10⁻⁴M), CoCl₂·6H₂O (1.5 × 10⁻³M), MeCN/tertiary amine/H₂O 3:1:1; the one-phase soln. was irradiated at 30° during 16 h with a 1000-W Xe-Hg lamp. Exper. 22-29 contained in 30 ml of solution: [Ru(bpy)₃]²⁺ (4.7 × 10⁻⁴M), [Co(bpy)₃]Cl₂·6H₂O (1.5 × 10⁻³M), DMF/tertiary amine 2:1; the one-phase solution was irradiated at 30° during 15 h (except for Exper. 22 and 24 which were irradiated during 3 h and for Exper. 29 which was irradiated during 6 h), with a 1000-W Xe-Hg lamp. Exper. 30-32 contain: [Ru(bpy)₃]²⁺ (4.7 × 10⁻⁴M); CoCl₂·6H₂O (1.5 × 10⁻³M) and 3 equiv. of 2,9-dimethyl-1,10-phenanthroline in DMF/(HOCH₂CH₂)₃N 2:1; irradiation time: Exper. 30, 3 h and Exper. 31, 15 h at 30° with a 1000-W Xe-Hg lamp. Exper. 33 and 34 contain: [Ru(bpy)₃]²⁺ (4.7 × 10⁻⁴M); CoCl₂·6H₂O (1.5 × 10⁻³M) and 3 equiv. of 4,4',6,6'-tetramethyl-2,2'-bipyridine in DMF/(HOCH₂CH₂)₃N 2:1; irradiation time: Exper. 33, 3 h and Exper. 34, 15 h at 30° with a 1000-W Xe-Hg lamp.

^b) Solution was saturated with CO₂.

^c) Control exper. performed without Co ions of complexes.

d) Formal pH adjusted to 8.9 with conc. AcOH.

^{e)} 20% H₂O added to the soln. (DMF/(HOCH₂CH₂)₃N/H₂O 3:1:1).

f) 3 equiv. of bpy, with respect to the Co complex, added to the medium.

peak of mass 30 in *Fig. 2b* is that of ¹³C¹⁷O. The MS determinations were performed on gases from which all ¹³CO₂ had been removed, in order to avoid any contribution to the ¹³CO peak from the decomposition of ¹³CO₂ itself in the mass spectrometer (see *Exper. Part*).

A series of control experiments was performed to confirm that the presence of each component was essential. Both system showed no activity ($< 1 \mu l H_2$ and CO), when either the photosensitizer, the tertiary amine, or light were omitted. In the absence of MeCN, the system containing [Ru(bpy)₃]²⁺, CoCl₂, and H₂O/Et₃N 3:2, produced only a few μl of H₂. Irradiation experiments performed without CO₂ gave exclusively H₂ (*Exper. 3* and *Exper. 25*); in these cases, the formal pH was adjusted to that obtained in the presence of CO₂ by addition of conc. HCl to the aquo-organic solution (MeCN/H₂O), or of conc. AcOH to the purely organic DMF medium. When the acidity was not adjusted in the case of the MeCN/H₂O medium, less H₂ was evolved (*Exper. 2* and *3*). When the catalytic species Co²⁺ or [Co(bpy)₃]²⁺ were not added, only small quantities of

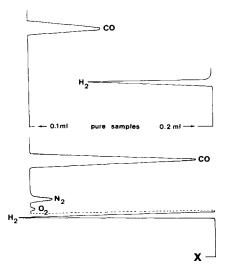


Fig. 1. GC Analysis of photogenerated $(CO + H_2)$ gas (0.5 ml) (bottom, see X). Pure CO (0.1 ml) and H₂ (0.2 ml) were used as references.

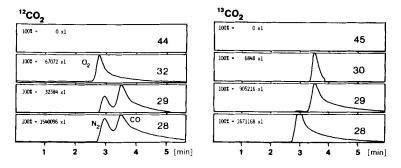


Fig. 2. GC/MS Analysis of photogenerated CO. Gas obtained from photoreduction of ${}^{12}CO_2$ (left) and ${}^{13}CO_2$ (right); the mass peaks are recorded at very different sensitivities, indicated by the figure for 100% (= height of strongest peak) at left and decreasing from top to bottom (for example CO at mass 29 on left is natural abundance ${}^{13}CO$); abscissa: GC retention time in min.

 H_2 and CO were detected (*Exper. 4* and *Exper. 24*). In accord with recent results obtained using (bipyridine)ruthenium complexes in the photoreduction of CO₂ to formate [10], one may suspect bis(bipyridine)ruthenium complexes (obtained by photolabilization of a bpy ligand from the starting complex) to be the active species in these reactions. ¹³C-NMR studies performed in MeCN/H₂O or DMF, in the presence of 90.5% labelled CO₂, did not reveal other reduction products such as formate, formaldehyde, MeOH, or coupling products. Recent kinetic and mechanistic studies have described the reduction of HCO₃ to CO by [Co(bpy)₃]⁺ in aqueous media [11]. However, traces of formate were detected in the absence of Co ions or complexes (*Exper. 4* and *Exper. 24*).

To confirm the catalytic nature of our system and to investigate its stability, we performed some kinetic experiments. The photochemical gas production (CO and H_2)

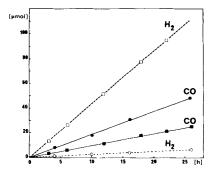


Fig. 3. Photogeneration of CO and H_2 as a function of time by photoreduction of CO_2 and H_2O . \oplus , \bigcirc : Conditions of *Exper. 18, Table 2,* with solution saturated with CO_2 . \blacksquare , \Box : Conditions of *Exper. 1, Table 1,* using $[Co(bpy)_3]Cl_2$ instead of $CoCl_2 \cdot 6H_2O$.

was linear during at least 26 h irradiation under the conditions described in *Fig. 3*. This was true whether a Co^{2+} salt, isolated $[Co(bpy)_3]^{2+}$ or *in-situ* prepared (bipyridine)cobalt complexes were used. One notes an inversion of CO/H₂ selectivity, when no bpy was used to complex the Co ions. The following turnovers were obtained by dividing the number of moles of $(CO + H_2)$ by the number of moles of species used: *Exper. 6*. [Ru(bpy)_3]²⁺, 21, and Co²⁺, 3; *Exper. 31*. [Ru(bpy)_3]²⁺, 164, and (2,9-dimethyl-1,10-phenanthroline)cobalt complex, 26. The homogeneous character of the system was checked by ultracentrifugation (15 h at 20000 rpm) of the irradiated main systems (*Exper. 6* and *31*); no deposit was detected during or after photolysis, and subsequent irradiation of the same sample showed the same efficiency.

The results described here clearly demonstrate that CO_2 and H_2O were *reduced photocatalytically, homogeneously,* and with *good efficiency,* into CO and H_2 . To improve empirically efficiency and selectivity, and to investigate the mechanism of these processes, we have studied the influence of various parameters of the system. The composition of the medium (H_2O and CO_2 contents, proportions of tertiary amine, and of organic solvent), the nature of the tertiary amine and of the organic solvent used, and the presence of specific ligands for Co ions may be expected to influence the process by various means: coordination with Co ions, stabilization of reduced species and reactive intermediates, availability of protons, amount and nature of dissolved CO_2 , etc.

Effects of Medium Composition and of Nature of the Tertiary Amine. A number of variations were studied mainly for two systems.

1) System $[Ru(bpy)_3]^{2+}$, $CoCl_2$, R_3N , $MeCN/H_2O$. With the proportion of H₂O arbitrarily fixed at 20%, an optimal efficiency in the photochemical generation of $(CO + H_2)$ was obtained using 20% Et₃N, at CO₂ saturation. Similar variation in efficiency was observed on varying the relative proportions of H₂O (optimum at ~ 20%) and tertiary amine, while maintaining the proportion of MeCN at 60%. In the absence of H₂O (medium composition MeCN/Et₃N 3:2), the efficiency of the system decreased drastically. The optimum composition was about MeCN/Et₃N/H₂O *ca.* 3:1:1.

Addition of up to 1 equiv. of bpy had a marked effect on CO generation (*Fig. 4*) [8]. On further addition, the quantities of CO and H_2 formed decreased and increased, respectively, linearly with added bpy.

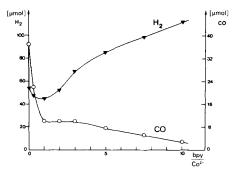


Fig. 4. Effect of addition of increasing amounts of bpy (equivalents with respect to Co^{2+} ions) on CO and H_2 photogeneration. Conditions of Exper. 1, Table 1.

Two main types of tertiary amines have been tested: *alkylamines* such as Me_3N , Et_3N (*Table 1*), and *hydroxylated amines* such as 'triethanolamine' ((HOCH₂CH₂)₁N), ((CH₃CH(OH)CH₂)₃N), 'diethanolmethylamine' ((HOCH₂CH₂)₂NMe), or 'dimethylethanolamine' ((HOCH₂CH₂)NMe₂) (Table 2). In the first class, at CO₂ saturation, Pr₃N gave by far the most efficient system (Exper.6). When the volume of dissolved CO₂ was maintained constant (at 200 ml), the efficiency sequence was: Pr₁N ≈ $Et_3N > Bu_3N > (pentyl)_3N > Me_3N$. Using either Bu_3N (*Exper. 14*) or (i-Bu)_3N (*Exper. 15*), with 140 ml of CO_2 dissolved in the solution (saturation volume for $(i-Bu)_3N$, no CO but the same amounts of H₂ was obtained, whereas saturation of the Bu_3N medium with 320 ml of CO_2 (*Exper.8*) gave significant CO generation.

It is clear that, in addition to the nature of the tertiary amine, the volume of CO_2 dissolved in the medium also plays an important role. With Et₃N as donor, the photochemical generation of CO and H₂ increased and decreased, respectively, linearly with increasing amounts of dissolved CO_2 (*Fig. 5a*). At the same time, the selectivity increased until 600 ml of CO_2 were dissolved and then levelled off (*Fig. 5b*); a similar curve of acid-base-titration type has previously been reported [12]. However, although at saturation Pr₃N dissolved less CO_2 than Et₃N (*Exper. 1* and 6), the efficiency in CO formation was 18 times higher. Similarly, Pr₃N and (i-Pr)₂NEt (*Exper. 6* and *16*) both dissolved at saturation the same amount of CO_2 , but showed different CO and H₂ generation activi-

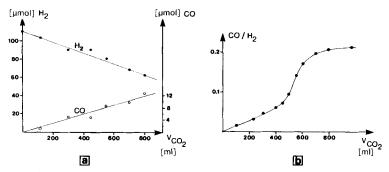


Fig. 5. Efficiency of CO and H_2 photogeneration (left) and of CO/H_2 selectivity (right) as a function of the volume of CO_2 dissolved in the medium. Conditions of Footnote a, Table 1, with [Co(bpy)₃]Cl₂ instead of CoCl₂ · 6H₂O.

ties. N,N,N',N'-Tetramethylethylenediamine (TMEDA) may, in addition, act as chelating ligand for the Co(II) ions (*Exper. 17*). By comparison with Me₃N (*Exper. 7*) or Et₃N (*Exper. 10*) CO generation was not affected, while H₂ production increased from Me₃N to Et₃N and to TMEDA. Coordination of the tertiary amine with the Co(II) ions yields complexes which, when reduced, may exhibit different reactivities towards CO₂ and H₂O. Aromatic tertiary amines such as N,N-dimethylaniline or N,N,N',N'-tetramethylbenzidine were not active as donors, presumably because their reversible oxidation does not allow accumulation of reduced species in the medium.

With the second class of electron donors, the *hydroxylated amines*, photoreduction was appreciably more efficient in general (*Table 2*). A marked decrease in CO₂ reduction was observed when a hydroxylated chain of (HOCH₂CH₂)₃N was replaced by an alkyl group (*Exper. 18* and *19*); with (HOCH₂CH₂)₂NMe, CO₂ reduction was strongly inhibited, but a large quantity of H₂ was generated. With HOCH₂CH₂NMe₂, formation of both CO and H₂ was very slow (*Exper. 20*), as with Me₃N (*Exper. 7*). For the amines tested, the following activity sequences were obtained: (HOCH₂CH₂)₃N > (CH₃CH(OH)CH₂)₃N > (HOCH₂CH₂)₂NMe \approx Me₃N and (HOCH₂CH₂)₂NMe > (HOCH₂CH₂)₃N > (HOCH₂CH₂)₂NMe₂ \approx Me₃N > (CH₃CH(OH)CH₂)₃N for CO₂ and H₂O reduction, respectively. With *N*-ethyl- or *N*-methylmorpholine as donors, neither CO nor H₂ could be detected.

Another interesting feature of these hydroxylated tertiary amines is the inhibition of Co(II) oxidation to Co(III) species. The blue solution (λ_{max} 650 nm) obtained on complexation of the Co²⁺ ion by an alkylamine in the presence of MeCN and H₂O gave, on contact with air, an insoluble brown solid attributed to (amine)cobalt(III) species. This precipitate disappeared on reduction in the present photochemical system. By contrast, the pink-violet colour (λ_{max} 570 nm) obtained with hydroxylated amine and Co(II) salts, was stable during several hours, in air. Despite the formation of weak Co²⁺/(HOCH₂CH₂)₃N complexes in H₂O (pK = 1.7 [13]), (hydroxylated amine)cobalt(I) complexes.

The p K_a values of alkylamines are much higher than those of hydroxylated amines (p K_a 10.7 and 7.9 for Et₃N and (HOCH₂CH₂)₃N, respectively [13]). At saturation, the former dissolved more CO₂ than the latter (800 ml for Et₃N and 400 ml for (HOCH₂CH₂)₃N), the apparent pH of the final solution being approximatively the same (~8.6). The pK for the CO₂/HCO₃⁻ equilibrium is 10.3 in H₂O, so that the solution contained free CO₂ and HCO₃⁻, as was confirmed by ¹³C-NMR measurements using labelled CO₂. However, the nature of the active species during reduction by the Co(I) complex is as yet unknown. Since the oxidation potential $E'^0(D^{+-}/D)$ of the amines used all fall in a narrow range (+0.75 to 0.85 V²) [14]), the effects observed should arise from ligating ability rather than difference in reductive power.

2) System $[Ru(bpy)_3]^{2+}$, $[CoL'_n]^{2+}$, $DMF/(HOCH_2CH_2)_3N$ or $DMF/(HOCH_2CH_2)_3N/H_2O$ (L' = bpy, 4,4',6,6'-tetramethyl-2,2'-bipyridine, or 2,9-dimethyl-1,10-phenanthroline). In these experiments, preformed Co(II) complexes were used instead of Co(II) ions. With bipyridine as ligand, the efficiency of the photochemical reaction was enhanced by a factor of 50 (*Table 2, Exper. 22* and 23). Addition of 20% of H₂O increased CO formation and decreased H₂ generation (*Exper. 23* and 26). Excess free

²) All redox potentials listed in the present work are given vs. the normal hydrogen electrode (NHE).

bipyridine slightly affected CO₂ and H₂O reduction (*Exper. 23, 27,* and 28). By far, the best results were those obtained with (2,9-dimethyl-1,10-phenanthroline)cobalt complexes in purely organic medium (*Exper. 31*); addition of H₂O decreased CO generation by a factor of 10 (*Exper. 32*). This behaviour might be related to the instability of the (2,9-dimethyl-1,10-phenanthroline)cobalt complex in the presence of H₂O; the blue colour observed in DMF disappeared instantaneously on addition of a few drops of H₂O. The system was unstable under prolonged irradiation in some experiments (*Exper. 30, 31,* and 34). The linearity observed in *Fig. 3* with $[Co(bpy)_3]^{2+}$ in MeCN/(HOCH₂CH₂)₃N/H₂O 3:1:1 was only maintained for generation of rather small quantities of gases. Such unstability was also found previously for an homogeneous H₂-producing system [12]. Photodecomposition of the photosensitizer in DMF solution [15] as well as in other solvents [16] and formation of a secondary amine, a strong ligand, from the consumption of the electron donor, could be the main factors responsible for the loss of efficiency with time. The marked effect observed between (HOCH₂CH₂)₃N and (HOCH₂CH₂)₂NMe in the Co²⁺ system (*Exper. 18* and *19*) was not found with (bipyridine)cobalt complexes

Exper.	Solvent	Co ligand ^b)	Volume of CO ₂ dissolved [ml]	Volume of CO produced [ml]	Volume of H ₂ produced [ml]	$CO + H_2$ [µmol]	CO/H ₂
34	Ethylene glycol dimethyl ether		200	1.65	0.67	96.7	2.5
35	DMF	_	180	0.56	1.13	70.4	0.5
36	MeCN ^c)	_	400	0.18	0.04	9.2	4.5
37	Diethoxydiethylene glycol	-	400	0.005	0.01	-	
38	THF ^c)	-	270	0.43	0.13	22.3	3.5
39	Dioxane ^c)	-	200	0.86	0.38	51.3	2.3
40	CHCl ₃ ^c)	_	400	0.06	0.02	3.5	3.4
41	Tetramethylurea ^c)	_	150	0.37	0.62	41.2	0.6
42	DMF	bpy	150	0.65	1.17	76.0	0.6
43	DMF	dm-phen	150	2.00	13.0	625	0.2
44	DMF	phen	150	0.20	0.41	26.7	0.5
45	DMF	dph-phen	150	0.40	0.004	16.7	-
46	DMF	dmdph-phen	150	0.05	12.8	535	
47	DMF	bathophen-S ₂	150	0.35	0.11	19.2	3.3
48	DMF	bathocup-S ₂	150	0.70	6.36	293	0.1
49	DMF	bpy-R ₂	150	0.73	1.78	105	0.4
50	DMF	bpy-R ₄	150	1.80	1.25	127	1.5
51 ^d)	DMF	bpy-R ₂	150	< 1 µl	1.48	61.7	
52	DMF	vitamin B ₁₂	150	0.58	0.16	30.8	3.6

Table 3. Photogeneration of CO and H_2 as a Function of the Solvent and Co Ligand	Table 3. Photogeneration of	of CO and H_2 a	as a Function of the	Solvent and Co Ligand ^a
---	-----------------------------	-------------------	----------------------	------------------------------------

^a) All experiments contained: [Ru(bpy)₃]²⁺ (4.7 × 10⁻⁴M), CoCl₂·6H₂O (1.5 × 10⁻³M), in 30 ml of soln. *Exper. 34–41* contained: 20% (HOCH₂CH₂)₃N and 20% of H₂O and were irradiated at 30° during 15 h with a 1000-W Xe-Hg lamp. *Exper. 42–52* contained: DMF/(HOCH₂CH₂)₃N 2:1 and were irradiated at 30° during 15 h with a 1000-W Xe-Hg lamp.

^b) Complexes prepared *in situ* by addition of 3 equiv. of ligand (4.5 × 10⁻³M); bpy: 2,2'-bipyridine; phen: 1,10-phenanthroline; dm-phen: 2,9-dimethyl-phen ('neocuproine'); dph-phen; 4,7-diphenyl-phen; dmdph-phen: 2,9-dimethyl-4,7-diphenyl-phen ('bathocuproine'); bathophen-S₂: disodium, 4,7-diphenyl-phen-4',4"-disulfonate; bathocup-S₂: disodium, 2,9-dimethyl-4,7-diphenyl-phen-4',4"-disulfonate; bpy-R₂: 4,4'-di-methyl-bpy; bpy-R₄: 4,4',5,5'-tetramethyl-bpy; bpy-R₂: 3,3'-dimethyl-bpy.

^c) Two phases formed on saturation with CO₂.

^d) The same results were obtained with 6 equiv. of β -picoline (= 3-methylpyridine; 9.5 × 10⁻³ M).

(*Exper. 23* and 29). This confirms that the environment of the Co ion is an important factor in the reduction of CO_2 , the amine effect being less pronounced when a ligand such as bpy or 2,9-dimethyl-1,10-phenanthroline (= 'neocuproine') was used.

Influence of the Solvent. In homogeneous catalysis, the solvent often plays a critical role, in particular by its ligating abilities [17]. As seen above, the results were markedly dependent upon the nature of the solvent (MeCN or DMF). Therefore, we tested a series of different solvents using Co²⁺ as the relay species, (HOCH₂CH₂)₃N as the electron donor, in the presence of H_2O and at CO_2 saturation. Efficiency and selectivity were clearly solvent dependent, and the best results were obtained with monoglyme (ethylene glycol dimethyl ether) and DMF (Table 3, Exper. 34 and 35). The selectivity was highest with MeCN. Both CO₂ and H₂O photoreductions were inhibited with a solvent such as diethoxydiethylene glycol (*Exper. 37*). It is unlikely that this strong effect is related to changes in the reduction potential of the Co ions or in the excited state lifetime of $[Ru(bpy)]^{2+}$ as a function of solvent. The Co(II)/Co(I) couple was in the range of -1.25 V to -1.23 V in different solvents (DMF, MeCN, monoglyme, and diethoxydiethylene glycol with (HOCH₂CH₂)₁N added) as compared to -1.0 V for [Co(bpy)₂]²⁺[18]. No large changes in the excited-state life-time of $[Ru(bpy)_{1}]^{2+}$ were found when measured in the following solvents: MeCN (780 ns), THF (590 ns), DMF (670 ns), monoglyme (650 ns), dioxane (510 ns), and diethoxydiethylene glycol (800 ns)³).

Effect of the Nature of the Co Ligand. As discussed above, the results depended strongly upon whether Co(II) ions or Co complexes were used. The stability of $[Co(bpy)_{3}]^{n+}$ (n = 2 or 1) complexes in the MeCN/Et₃N/H₂O or DMF/(HOCH₂CH₂)₃N medium may explain at least in part the differences observed. CO₂ activation requires at least one vacant coordination site at the Co center. Since this may be achieved only by ligand labilization, the effect of changing the ligand was investigated (Table 3). Me substituents increase the reductive properties of the Co(I) complex, which may facilitate reduction of CO_2 and H_2O . A small increase in efficiency was observed on increasing the number of Me substituents on the bipyridine ligand (Exper. 42, 49, and 50). With 4,4',5,5'-tetramethyl-2,2'-bipyridine, the selectivity was 2.5 times higher than with bpy itself. 3,3'-Dimethyl-2,2'-bipyridine gave the same result as 6 equiv. of β -picoline, no CO being produced in either case (*Exper. 51*). Highest efficiency was obtained using α -substituted phenanthrolines such as 2,9-dimethyl-1,10-phenanthroline (Exper. 43) or 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (Exper. 46). In contrast, 1,10-phenanthroline or derivatives with no Me substituents in the α -position gave significantly less CO and H₂ than bpy. Chelating and non-chelating phosphines such as Ph₃P, 1,2-diphenylphosphinoethane, or 1,2-diphenylphosphinoethylene gave poor yields of CO and H₂. The high stability of (phosphine)cobalt(I) complexes may explain their low reactivity. With the Co cation complexed by dimethylglyoxime, CO_2 reduction was totally inhibited, while H₂ formation was strongly enhanced [12]. Complexing Co(II) ions with various macrocyclic ligands also led to photochemical reduction of both H_2O and CO_2 to H_2 and CO_2 respectively [12] [19].

Of biological interest was the use of cobalamin (vitamin B_{12}) as relay. Turnover was low (*Exper. 52*), but a labelled experiment with ¹³CO₂ (90.5%) confirmed the reduction of CO₂ giving 90% of ¹³CO.

³) We thank Dr. A. Harriman of the Royal Institution, London, for performing these measurements.

Exper.	Photosensitizer/ Co species ^b)	τ _ο [μs] ^c)	Absorption λ _{max} [nm]	Volume of CO produced [ml]	Volume of H ₂ produced [ml]	CO + H ₂ [µmol]	CO/H ₂
53	$[Ru(bpy)_3]^{2+}/Co^{2+}$	0.78	452	0.71	0.11	34.3	6.2
54	$[Ru(bpy)_3]^{2+}/Co^{2+}/2$ equiv. bpy	0.78	452	0.41	0.66	44.6	0.6
55	$[Ru(bpy-R_2)_3]^{2+}/Co^{2+}$	0.33	460	< Iµ1	0.16	6.7	
56	$[Ru(bpy-R_2)_3]^{2+}/Co^{2+}/2$ equiv. bpy	0.33	460	0.20	0.31	21.2	0.6
57	$[Ru(bpy-R_4)_3]^{2+}/Co^{2+}$	0.77	457	<1µl <	< 1 µl	-	-
58	$[Ru(phen)_3]^{2+}/Co^{2+}$	0.81	44 7	< 1 µl	0.14	5.8	-
59	$[Ru(phen)_3]^{2+}/Co^{2+}/2$ equiv. bpy	0.81	447	0.25	0.34	24.6	0.7
60	$[Ru(bathophen-S_2)_3]^{4-}/Co^{2+}$	3.4	454	0.09	0.22	12.8	0.4
61	$[Ru(phen)_2(CN)_2]/Co^{2+}$	1.1	475	< 1 µl <	< 1 μl	-	-

Table 4. Photogeneration of CO and H_2 as a Function of Photosensitizer^a)

^a) All experiments contain [RuL₃]²⁺ or [RuL₃]⁴⁻ (4.7 × 10⁻⁴M), CoCl₂·6H₂O (1.5 × 10⁻³M), dissolved in 30 ml of MeCN/(HOCH₂CH₂)₃N/H₂O 3:1:1 and containing 400 ml of CO₂ (*Exper. 53, 55, 57, 58, 60, and 61*) or in 30 ml of DMF/(HOCH₂CH₂)₃N/H₂O 3:1:1 and containing 140 ml of CO₂ (*Exper. 54, 56, and 59*). Irradiation was carried out at 30°, during 15 h with a 1000-W Xe-Hg lamp.

^b) bpy: 2,2'-bipyridine, bpy- R_2 : 4,4'-dimethyl-2,2'-bipyridine, bpy- R_4 : 4,4',5,5'-tetramethylbipyridine, phen: 1,10-phenanthroline, bathophen- S_2 : disodium 4,7-diphenyl-phen-4',4"-disulfonate.

^c) Lifetime of the excited state determined in MeCN for $[Ru(L)_3]^{2-}$ and in H₂O for $[Ru L_4]^{4-}$.

Effect of the Nature of the Photosensitizer. The photosensitizer was modified in order to investigate the effect of variations in excited-state life-time, redox potential of the ground and excited states, and complex stability (Table 4). No correlation was found between the excited-state life-time of $[RuL_3]^{2+}$ complexes and the efficiency of the photochemical system. The redox potentials play a major role in different steps of the process. For all the photosensitizers studies, $[RuL_1]^+$ is reductive enough to produce from Co(II) the Co(I) species necessary for reduction of CO₂ and H₂O. However, the limiting factor may be the oxidizing potential (III)/(II)* of the ruthenium excited state. Thus, the excited states of $[Ru(phen)_2(CN)_2]$ and $[Ru(bpy-R_4)_1]^{2+}$ (bpy-R_4 = 4,4',5,5'-tetramethyl-2,2'-bipyridine) cannot be quenched by $(HOCH_2CH_2)_3N$: $E'^0([Ru(phen)_2(CN)_2]^{*0/-}) = +0.4 V$ [20], $E'^{0}([Ru(bpy-R_{4})]^{*2+/+}) = +0.67 \text{ V}^{4}), E'^{0}((HOCH_{2}CH_{2})_{3}N^{+}/(HOCH_{2}CH_{2})_{3}N) = 0.82$ V [22]. No trace of CO or H_2 was detected in either cases (*Exper. 57* and 61). Apart from these thermodynamic factors, the most important effect of modifying the photosensitizer lies in ligand photolabilization. Whereas the $[Ru(bpy)_3]^{2+}/Co^{2+}$ system (Exper. 53) was quite efficient, [Ru(bpy-R₂)₃]²⁺/Co²⁺ (Exper. 55) produced very little CO. However, addition of 2 equiv. of free bpy to both systems (Exper. 54 and 56) resulted in the same selectivity (CO/ $H_2 = 0.6$) and gave similar efficiencies. Addition of 2 equiv. of bpy to $[Ru(phen)_{3}]^{2+}$ (Exper. 59) also gave similar efficiency and selectivity. This suggests that the active (bipyridine)cobalt complex was the same in all three cases, and that the Ru complex acted effectively as a photosensitizer. When UV light ($\lambda > 300$ nm; 1000-W Xe-Hg lamp) was used with no Ru photosensitizer present, 0.23 ml of CO and 1.36 ml of H, were produced after 15 h. Excited Co ions may oxidize H₂O [23] or the tertiary amine [24]. The resulting species could mediate the reductions of CO₂ and H₂O to CO and H₂.

⁴) This value has been obtained by adding the estimated zero-zero transition energy from photoemission measurements (~ 2.15 eV) to the ground-state redox potential [21].

H-Atoms have been identified by EPR studies during the UV irradiation of Co^{2+} complexes of organic acids [23]. Photosensitizers such as proflavin and Co-phthalocyanine did not afford any reduction products.

Temperature Effect and Quantum Yield. Photochemical CO generation doubled on raising the temperature by 10°, while the H₂ yield remained stable (*Fig. 6*). This temperature dependence for the formation of CO agrees with the decomposition of a Co intermediate in the CO_2 -reduction cycle, whereas the very fast protonation of a Co-hydride species is practically independent of temperature [25].

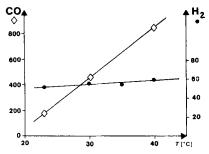


Fig. 6. Efficiency of CO and H_2 photogeneration as a function of temperature. Conditions of Exper. 18, Table 2, at saturation with CO₂ and irradiating with a 1000-W Xe lamps for 16 h.

Using as actinometer, a published homogeneous hydrogen generation system having a quantum yield of 13% [26], the photochemical system $[Ru(bpy)_3]^{2+}$, (2,9-dimethyl-1,10-phenanthroline)cobalt, and DMF/(HOCH₂CH₂)₃N 2:1, gave under the same experimental conditions ($\lambda = 450 \pm 20$ nm) quantum yields of 1.2 and 6.5% for CO₂ and H₂O photoreduction, respectively.

Mechanistic Components of the CO₂ and H₂O Photoreduction Processes. – As stated above, the photochemical CO- and H₂-generation processes are catalytic with respect to the Ru and Co complexes. They consume a tertiary-amine donor (D), which provides the electrons required for CO₂ and H₂O reduction. The protons involved in these reductions may come from either the oxidized amine (D^{++}) or from H₂O present in the medium.

$$2D + \begin{cases} CO_2 + 2H^+ \\ 2H^+ \end{cases} \xrightarrow{hv} 2D^{+-} + \begin{cases} CO + H_2O \\ H_2 \end{cases}$$
(1)

The net reactions may be expressed as given in Eqn. 1. The process comprises two catalytic cycles: a photochemical cycle involving tris(bipyridine)ruthenium and a thermal cycle based on the Co complex. Before discussing in more detail the mechanism of the reactions occurring, it is necessary to establish the sequence of overall steps which leads to the products CO and H_2 .

Photochemical Ruthenium Cycle. The pathway for quenching of the excited state of (polypyridyl)ruthenium(II) complexes by $[CoL_3]^{2+}$ complexes, (reductive, oxidative, or energy-transfer) depends on the nature of the ligand and on the sensitizer-quencher combination [11] [28] [29]. Possible pathways for quenching of * $[RuL_3]^{2+}$ and generation of Co(I) are described by *Eqns. 2–4*.

Reductive quenching:

*
$$[\operatorname{RuL}_3]^{2+} + D \longrightarrow [\operatorname{RuL}_3]^+ + D^+$$
 (2)

 ΔG^5) $\approx 0 \text{ eV}$ (L = bpy), +0.15 eV (L = 4,7-dimethyl-1,10-phenanthroline), $D = (\text{HOCH}_2\text{CH}_2)_3\text{N}$.

$$[RuL_{3}]^{+} + [CoL_{3}]^{2+} \longrightarrow [RuL_{3}]^{2+} + [CoL_{3}]^{+}$$
(3)

 $\Delta G = -0.33 \text{ eV} (L = L' = \text{bpy}), 0 \text{ eV} (L = \text{bpy}, L' = \text{solvent}).$

Oxidative quenching:

*
$$[\operatorname{RuL}_3]^{2+} + [\operatorname{CoL}_3]^{2+} \longrightarrow [\operatorname{RuL}_3]^{3+} + [\operatorname{CoL}_3]^+$$
 (4)

 $\Delta G = +0.11 \text{ eV}$ (L = L' = bpy), +0.41 eV (L = bpy, L' = solvent), +0 eV (L = 4,7-dimethyl-1,10-phenanthroline, L' = bpy).

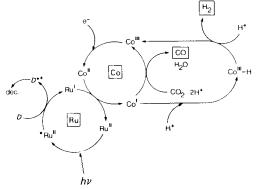


Fig. 7. Schematic representation of the process occurring in the simultaneous and competing generation of CO and H_2 by photoinduced reduction of CO₂ and H_2O using the system $[Ru(bpy)_3]^{2+}/Co(II)/donor$ (D) and following a pathway of reductive quenching of the excited state of the ruthenium photosensitizer. Only heterolytic formation of H_2 by protonation of a cobalt-hydride is shown; see also text; the ligands of the metal ions are not indicated.

It is clear that oxidative quenching of the [Ru(bpy)₃]²⁺ excited state is thermodynamically unfavourable, but, in view of recent kinetic studies [29], it cannot be excluded (see below). Fig. 7 gives a schematic representation of the photocatalytic reduction of CO_2 and H₂ by $[Ru(bpy)_{j}]^{2+}$ and Co complexes via a reductive quenching mechanism. Reductive quenching according to Eqn. 2 has been reported with organic donors such as aromatic tertiary amines [19] [30], ionic donors such as dithioanions [31] [32], Eu(II) [32] [33], sulfite [34], Ti(III) [35], or metal complexes such as $[Ru(NH_3)_6]^{2+}$ [32], $[Os(CN)_6]^{4-}$ [36], or $[Fe(CN),L]^{3-}$ [37]. Flash photolysis of $[Ru(bpy)]^{2+}$ in the presence of an electron donor such as Et₃N in MeCN [38] gave the Ru(I) species. With 25% of H_2O added, no accumulation of the reduced metal complex was observed, but a fast reaction with H₂O occurred [39]. Reductive quenching of $*[Ru(bpy),]^{2+}$ by a (macrocycle)cobalt(II) complex or by $[Co(bpy)_{1}]^{2+}$ was observed, when the electron donor was Eu(II) [40] or sodium ascorbate [26], respectively. In our work, on the photochemical reduction of CO_2 to formate [10], the reduced species was generated by reductive quenching of *[Ru(bpy)₃]²⁺ by a tertiary amine. However, reductive quenching of $*[Ru(bpy)_{3}]^{2+}$ by (HOCH₂CH₂)₃N in an organic solvent was difficult to detect and was an inefficient process. Stern-Volmer

⁵) ΔG is the free-energy change for the reaction in eV (1 eV = 23 kcal/mol).

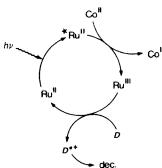


Fig. 8. Modification of the scheme of Fig. 7 for the case of oxidative quenching of the excited state of the $[Ru(bpy)_3]^{2+}$ photosensitizer

plots obtained with $(HOCH_2CH_2)_3N$ as quencher in DMF were linear and gave a quenching rate constant of $1.7 \times 10^5 \text{ m}^{-1}\text{s}^{-1}$, at the limit of the method.

Fig. 8 is a schematic representation of the oxidative quenching process. Although thermodynamically unfavourable with $[Ru(bpy)]^{2+}$ (see above), it has been observed in the case of $*[Ru(4,7-(CH_3)_2phen)_3]^{2+}$ and $[Co(bpy)_3]^{2+}$ [29], where the excited state of the photosensitizer is more reducing by 170 mV than *[Ru(bpy)]²⁺. Consequently, ΔG for this reaction (Eqn. 4) is near 0 eV. Quenching rate constants were reported as 7.4×10^7 $M^{-1}s^{-1}$ for $[Ru(4,7-(CH_3)_2phen)_3]^{2+}$ and $[Co(bpy)_3]^{2+}$ and $2.8 \times 10^7 M^{-1}s^{-1}$ for $[Ru(bpy)_3]^{2+}$ and $[Co(bpy)_{1}]^{2+}$ in aqueous medium [29]. We have determined a rate constant of $7.1 \times 10^7 \text{ m}^{-1}\text{s}^{-1}$ for quenching of *[Ru(bpy)_3]^{2+} by CoCl_2 in MeCN/(HOCH_2CH_2)_3N/H_2O 3:1:1 under Ar and of 5×10^6 m⁻¹s⁻¹ for the same reaction in MeCN/ (CH₃CH(OH)CH₂)₃N/H₂O 3:1:1 under a CO₂ atmosphere⁶). However, no detectable quenching of $[Ru(bpy)_1]^{2+}$ by $[Co(bpy)_1]^{2+}$ was observed in DMF/(HOCH₂CH₂)₁N 2:1 under CO₂. Quenching mechanism and rate constant depend on the reaction medium and the nature of ligand used to complex Co and Ru. As mentioned previously, no CO and H_2 were produced, when the excited state of the photosensitizer was less oxidising than *[Ru(bpy)]²⁺ (e.g. *[Ru(phen)](CN)] and *[Ru(bpy-R₄]²⁺), despite the fact that it was reducing enough to reduce $[Co(bpy)_1]^{2+}$. Conceivably, both mechanisms may participate in the photochemical process. It appears also that the rate of quenching may be a limiting factor in our photochemical system. The use of a single complex acting both as photosensitizer and as CO₂-activation catalyst would clearly simplify the mechanism and probably increase the efficiency of the photochemical reaction. This is the case with fac-[Re(bpy)(CO)₃X] whose excited state is efficiently quenched by (HOCH₂CH₂)₃N in an organic medium⁷) [9]. In the present case (*[RuL₁]²⁺ + [CoL₁]²⁺), both oxidative and reductive mechanisms yield the same net reaction:

$$[\operatorname{CoL}_{3}]^{2+} + D \frac{h_{\nu}}{[\operatorname{RuL}_{3}]^{2+}} [\operatorname{CoL}_{3}]^{+} + D^{+}$$
 (5)

Fast irreversible decomposition of the radical cation (D^{+}) allows the accumulation in solution of the reduced species and further reaction of this species with CO₂ and H₂O. The

⁶) Correction was made for absorption of the incident excitation light at 452 nm by the Co complexes.

⁷) (HOCH₂CH₂)₃N in DMF quenches fac-*[Re(bpy)(CO)₃Br] with a rate constant of 3.4×10^7 m⁻¹s⁻¹ at 25° under a CO₂ atmosphere.

role and fate of $(HOCH_2CH_2)_3N$ or other tertiary amines has been discussed in detail in [27] [39].

Catalytic Cobalt Cycle: CO_2 and H_2O Reduction by Co(I) Complexes. When $[\operatorname{Ru}(\operatorname{bpy})_3]^{2+}$ and $[\operatorname{Co}(\operatorname{bpy})_3]^{2+}$ were irradiated in DMF/(HOCH₂CH₂)₃N 2:1 in the absence of CO_2 , the initial orange-red solution turned blue-green. The VIS spectrum showed a new band at 620 nm (*Fig. 9c*), corresponding to the formation of (bipyridine)cobalt(I) species [18] [27]. When this blue-green solution was stored under CO_2 in the dark, the initial orange colour was restored after 3 h, and appreciable quantities of CO and H₂ were obtained (51% in total with respect to Co(I) complex formed photochemically; selectivity $CO/H_2 = 0.5$). The concentration of (bipyridine)cobalt(I) was determined from the VIS absorbance at 620 nm.

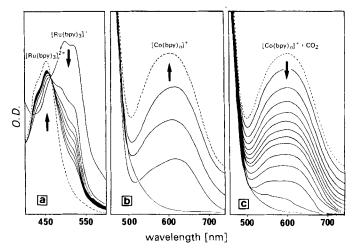


Fig. 9. Spectroscopic observation of the redox changes leading to generation of CO by reduction of CO₂. a) Formation of $[Ru(bpy)_3]^{2+}$ on addition of $[Co(bpy)_3]^{2+}$ to a soln. of electrochemically generated $[Ru(bpy)_3]^+$ in DMF; the broken line is the absorption of $[Ru(bpy)_3]^{2+}$ and was obtained after addition of 1.2 equiv. of $[Co(bpy)_3]^{2+}$ with respect to $[Ru(bpy)_3]^+$. b) Observation of $[Co(bpy)_3]^+$ formation corresponding to the changes shown in a, but at higher concentration and higher sensitivity of the spectrometer. c) Disappearance of the $[Co(bpy)_3]^+$ band in presence of CO₂; the reduced Co complex was produced photochemically by irradiation of a soln. of $[Ru(bpy)_3]^{2+}$, $[Co(bpy)_3]^+$ and $(HOCH_2CH_2)_3N$ in DMF in absence of CO₂; gas analysis indicated formation of CO and H₂ in ca. 51 % yield $(CO/H_2 = 0.5)$, see Text.

Chemical reduction of $[Co(bpy)_3]^{2+}$ with Na-Hg [41] or NaBH₄ [42] afforded a deep blue $[Co(bpy)_3]^+$ complex, which was precipitated by addition of a large excess of NaClO₄ and was recrystallised from EtOH. Addition of this air-sensitive complex as a dark-blue solid, to a degassed solution of DMF/(HOCH₂CH₂)₃N 2:1, gave a dark-blue solution whose absorption spectrum ($\lambda_{max} = 620$ nm) was identical to that obtained photochemically (*Fig. 9c*). Deep blue solutions of $[Co(bpy)_3]^+$ in DMF or MeCN with Et₄NClO₄ as supporting electrolyte, were also generated quantitatively⁸) by controlled potential electrolysis on a Hg cathode at -1.2 V under Ar. In the absence of CO₂ and O₂, the deep blue solution was stable for at least 7 days. After that time, only traces of H₂ (< 1% with

⁸) During the electropreparation of the reduced complex, 0.98 F per mol of $[Co(bpy)_3]^{2+}$ were consumed.

respect to the quantity of $[Co(bpy)_3]^+$ used) could be detected by GC. However, in the presence of CO₂ and in DMF/H₂O 4:1, the deep blue colour of the solution (containing 54 µmol of $[Co(bpy)_3]^+$) disappeared within 5 h (*Fig. 9c*). Concomitantly, appreciable yields of CO (11.4 µmol, 21 %⁹)) and H₂ (22.8 µmol, 42 %⁹)) were obtained. This large increase in H₂ generation was probably due to a pH effect, as confirmed by the fact that around 50 % H₂ with respect to $[Co(bpy)_3]^+$ was obtained in MeCN, in the absence of CO₂, when the formal pH was adjusted to ~ 5 with HCl.

 $[Ru(bpy)_3]^+$ was generated [43] in DMF/Et₄NClO₄ (controlled potential at -1.4 V on a Hg electrode; 0.97 F consumed per mol of $[Ru(bpy)_{3}]^{2+}$, under Ar) as a highly air-sensitive red complex with a characteristic λ_{max} at 510 nm [44] (Fig. 9a). When an Ar-degassed solution of $[Co(bpy)_{3}]^{2+}$ in DMF/H₂O 4:1 was gradually added to this $[Ru(bpy)_{3}]^{+}$ solution, the colour changed from red to green and then to blue-green, as two new absorption bands appeared in the VIS spectrum (Fig. 9a and b). The bands at 452 and 620 nm are characteristic of $[Ru(bpy)_3]^{2+}$ and $[Co(bpy)_n]^+$ complexes, respectively. This clean (isosbestic point) transformation is complete after addition of 1.2 equiv. of $[Co(bpy)_1]^{2+}$. On storing this blue-green reaction mixture under CO₂ for several hours, the original orange colour, characteristic of $[Ru(bpy)_3]^{2+}$ was restored, while CO and H₂ were formed in yields comparable with those obtained using performed $[Co(bpy)_3]^+$. The reported rate for the exergonic reduction of $[Co(bpy)_{1}]^{2+}$ by $[Ru(bpy)_{1}]^{+}$ is $4 \times 10^{8} \text{ m}^{-1}\text{s}^{-1}$ [26a]. Yields of both CO and H_2 were the same when the above experiments were carried out in presence of (HOCH₂CH₂)₃N, suggesting that the tertiary amine acts only as electron donor. Irradiation of a blue solution of $[Co(bpy)_3]^+$ in DMF under CO₂ atmosphere did not increase the yield of CO or H₂, indicating that only the Ru cycle is photochemically activated.

These experiments confirm that the present process resulting in the generation of CO and H₂ involves a sequence of three steps: 1) photoactivation of $[Ru(bpy)_3]^{2+}$, 2) the latter produces reduced Co(I) species, which 3) reduce catalytically CO₂ and H₂O. Since the reduction potential of the Co(I) species may be estimated as about -1.2 V, *dielectronic* reduction of both H₂O to H₂ and CO₂ to CO are thermodynamically feasible.

Mechanism of CO and H_2 Formation. H_2 Formation in homogeneous systems using Rh [27] [45] or Co [12] [26] [40] [46] complexes, proceeds via formation and subsequent protonation of a metal hydride. By analogy, the generation of H_2 in the photochemical process described here, may arise from the formation of a (bipyridine)cobalt(III)-hydride species (Eqn. 6) followed by protonation (Eqn. 7), which represents overall the dielectronic H_2 generation reaction (Eqn. 8).

$$[\operatorname{Co}^{I}(\operatorname{bpy})_{n}]^{+} + \mathrm{H}^{+} \longrightarrow [\operatorname{Co}^{III}\mathrm{H}(\operatorname{bpy})_{n}]^{2+}$$
(6)

$$[\text{Co}^{111}\text{H}(\text{bpy})_n]^{2+} + \text{H}^+ \longrightarrow [\text{Co}(\text{bpy})_n]^{3+} + \text{H}_2$$
 (7)

$$\mathbf{H}^{-} + \mathbf{H}^{+} \longrightarrow \mathbf{H}_{2} \tag{8}$$

Because of the lability of the bpy ligand, the exact nature of the active species could not be determined. In recent studies on the thermal reduction of hydrogencarbonate and H_2O using $[Co(bpy)_3]^+$, a possible intermediate was formulated as $[Co(bpy)_2(H_2O)H]^{2+1}$ [11].

⁹) If [Ru(bpy)₃]⁺ and [Co(bpy)₃]⁺ are considered as monoelectronic and dielectronic reagents, respectively, and since CO₂ and H₂O reduction are dielectronic processes, 1 mol of [Ru(bpy)₃]⁺ produces ½ mol of CO or H₂, whereas [Co(bpy)₃]⁺ produces 1 mol of CO or H₂. This introduces a factor of 2 in the calculation of the yield, when [Ru(bpy)₃]⁺ is used as reductant.

Two mechanisms may be envisaged for the CO_2 -reduction process if one excludes, as previously discussed [8a], the operation of the H₂O gas shift reaction in which CO, would be reduced to CO by initially formed H₂. The first involves the insertion of CO₂ into a cobalt-hydride bond of an intermediate also involved in the H₂O reduction, and the second consists in direct reaction of CO_2 with a Co(I) complex. In light of recent studies on fac-[Re(bpy)(CO)₃Cl] [9] [47], other Re complexes [48] [49] and Ru complexes [10], CO_2 insertion into a metal-hydride bond should yield coordinated or free formate. Decomposition of these (formate)metal complexes does not readily occur under mild conditions, and the reverse process of CO₂ extrusion to form metal hydrides has been observed for complexes of Mo, W [50], Os [51], and Re [48] [49]. Thermolysis in a high-boiling alcohol gave carbonyl hydrides in good yield [52]. Decomposition of free formate yielded CO₂ and H₂ but never CO [53]. In some cases, metal-carbonyl species were formed but these reactions were not cyclic with respect to the metal [49a] [54]. We did not observe in any case photochemical decomposition of formate to CO on irradiation of solutions containing [RuL₃]²⁺, [CoL'₃]²⁺, and HCOONa in DMF or MeCN/ $(HOCH_2CH_2)_3N/H_2O$ 3:1:1. Clearly, CO was not produced by the photodecomposition of free or coordinated formate. In our studies on a Ru-based system which efficiently reduced CO_2 to formate [10], only negligible amounts of CO were detected.

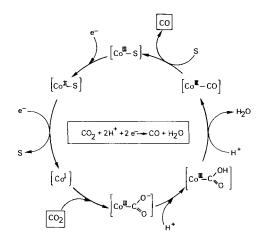


Fig. 10. Schematic representation of a possible catalytic Co cycle for reduction of CO_2 to CO via direct reaction of Co(1) with CO_2 to give a Co(111)-carboxylate intermediate. The electrons are provided by the added electron donor via the photochemical Ru cycle (Fig. 7); the dielectronic CO_2 to CO reduction shown as insert has a potential of -0.52 V [8] and is, therefore, thermodynamically feasible via Co(1) complexes (see Text); S: solvent or other ligand molecule.

Taken together, the available data suggest that the reduction of CO_2 to CO might arise from direct nucleophilic attack of the Co(I) complex on the electrophilic C-atom of the CO₂ molecule (*Fig. 10*). Reaction of CO₂ with Co(I) complexes to yield a C-metal bond has been reported [55]. Subsequent CO formation may involve reactions similar to, but in the reverse direction of, those described for the Co-catalyzed oxidation of CO [56]. The decomposition of a carboxylic intermediate by protonation would lead to the formation of H₂O and a labile (carbonyl)cobalt(III)species (*Fig. 10*). Formation of this intermediate by direct insertion of CO₂ into a cobalt(III)-hydride bond cannot be totally excluded, although such reactions have only been observed rarely [1]. Several metal carboxylates such as $[IrCl_2(COOH)(CO)(PMe_2Ph)_2]$ [57] and $[Re(\eta^5-C_5H_5)(CO)(p-N_2C_6H_4R)(COOH)]$ [58] have been obtained recently by direct attack of H₂O [57] or NaOH [58] on coordinated CO.

The above considerations agree with the schematic formulation of CO_2 reduction to CO by Co(I) species shown in *Fig. 10*. It also finds analogy in the reverse of the proposed photochemical H₂O gas shift reaction catalysed by $[Ru(bpy)_2(CO)CI]^+$ [59]. Further mechanistic details of CO₂ reduction to CO by Co(I) complexes and the reasons why only CO and not formate is produced, remain to be investigated.

Conclusion. – Photosynthetic systems which use light to drive a redox reaction in the non-spontaneous direction allow conversion of light energy into chemical energy. With $(HOCH_2CH_2)_3N$ as electron donor, the net reactions occurring in the system described here, are given in *Eqns. 9* and *10*.

$$(\text{HOCH}_2\text{CH}_2)_3\text{N}(l) + \text{CO}_2(g) \xrightarrow{\text{PS}, h\nu} (\text{HOCH}_2\text{CH}_2)_2\text{NH}(s) + \text{CO}(g) + \text{HCO}-\text{CH}_2\text{OH}(s)$$
(9)

$$(HOCH_2CH_2)_3N(l) + H_2O(l) \longrightarrow (HOCH_2CH_2)_2NH(s) + HCO-CH_2OH(s) + H_2(g)$$
(10)

The ΔG° values for these reactions are +1.34 eV for Eqn.9 and +1.23 eV for Eqn.10, amounting to about 65% and 55% conversion of the excited-state energy of $[\text{RuL}_3]^{2+}$ into chemical energy, respectively, assuming that Eqns.9 and 10 represent the overall chemical transformations in this photochemical system. The difference between the combustion energies of the starting materials and products represents the energy gain in terms of materials consumed and generated. Based on the following data: $\Delta H_{\rm f}^{\circ}((\text{HOCH}_2\text{CH}_2)_3\text{N}(l)) = 664.2$ [60], $\Delta H_{\rm f}^{\circ}((\text{HOCH}_2\text{CH}_2)_2\text{NH}(s)) = 493.8$ [60]; $\Delta H_{\rm f}^{\circ}(\text{CO}_2(g)) = 393.5$ [61], $\Delta H_{\rm f}^{\circ}(\text{CO}(g)) = 110.5$ [61], $\Delta H_{\rm f}^{\circ}(\text{CHO}-\text{CH}_2\text{OH}(s)) = 387$ kJmol⁻¹ [60] at T = 298.15 K, we estimate that *ca*. 66 kJmol⁻¹ are stored in *Reaction* 9. The reported experimental value for *Reaction* 10 is 69 kJmol⁻¹ stored energy [60].

The photochemical system described here produces a 'synthesis gas' mixture $(CO + H_2)$ with an efficiency and a selectivity (CO/H_2) depending upon the nature of the Co and Ru complexes used, the composition of the medium, the concentration of CO₂ in solution, the temperature, *etc.* The catalytic reduction of CO₂ to CO by Co(I) species formed as intermediates, represents a new CO₂-activation reaction.

In both the CO and H_2 generation processes, an organic donor molecule is consumed. Ultimately, the electron-donor molecule should be the H_2O molecule along the global *Reaction 11*:

$$CO_2 + H_2O \longrightarrow CO + H_2 + O_2$$
(11)

This equation amounts to the separate formation of the components CO and H₂ of formaldehyde H₂CO, which represents the lowest homolog (n = 1) in the conversion of CO₂ into carbohydrates by natural photosynthesis, see Eqn. 12.

$$n\mathrm{CO}_2 + n\mathrm{H}_2\mathrm{O} \longrightarrow \mathrm{C}_n\mathrm{H}_{2n}\mathrm{O}_n + n\mathrm{O}_2 \tag{12}$$

To achieve *Reaction 11*, the catalytic system must provide pathways for generation of both CO and H_2 . This is the case for the homogeneous Co-catalyzed process described above.

Further developments in photochemical and chemical systems performing CO₂ fixation processes involve *inter alia* the search for new photocatalysts, where the function of both photosensitizer and CO₂ reduction catalyst are combined in the same species (*e.g. fac*-[Re(bipy)(CO)₃Cl] [9]) and new chemical and electrochemical catalysts for the reduction of CO₂ to CO, HCOO⁻, CH₂O, CH₃OH, CH₄, or higher C-homologues.

Experimental Part

General. All commercially avalaible chemicals employed were reagent-grade and used without further purification, unless stated otherwise. Irradiations: 1000-W Xe-Hg lamp or 1000-W Hg lamp. The light beam was concentrated with a converging lens and its width was adjusted so that the entire soln, was irradiated. The light was filtered by a 400-nm cut-off filter (Schott GG420), having 0% transmission at 395 nm. GC: Varian Aerograph 700 apparatus, 5-Å molecular sieve column (13 × mesh 42/60, Applied Science Laboratories Inc.), at r.t. using CH₄ as the carrier gas [27]; when labelled CO₂ was used, the gas was analysed by GC/MS using a R 10/10 Ribermag GC/MS apparatus. Emission measurements: Perkin-Elmer, model MPF-3 spectrofluorimeter equipped with a 150-W Xe lamp. Quantum yields: 1000-W Hg lamp and a Schöffel model GM 250 monochromator (450 ± 20 nm). Light intensities: by $[Ru(bpy)_1]^{2+}$, $[Co(NH_3)_5Cl]Cl_2$ actinometry [45]; typically 1.8×10^{-9} einstein sec⁻¹ cm⁻². Electrochemical measurements: were made vs. the saturated calomel electrode (SCE) at r.t. and were uncorrected for junction potentials effects. Cyclic-voltametry studies: PRT 20-2X Tacussel potentiostat, GSATP2 Tacussel pilot scanner, ADTP3 Tacussel current potential converter, and IF 3802 IFELEC XY recorder. UV/VIS spectra: Cary 118 or 219 spectrophotometer, quartz cell mounted on a Schlenk tube; when required, the optical path-length could be reduced from 5 to 0.5 mm by the use of a transparent insert; molar extinction coefficients were obtained from absorbance measurements on at least two different concentrations of complex. ¹³C-NMR spectra: Bruker SY-200 spectrometer at 50.3 MHz, solvent ((D₂)DMF or MeCN) as internal standard; reactions monitored by ¹³C-NMR spectroscopy were performed in sealed NMR tubes under ¹³CO₂ atmosphere (90.5% enriched).

Photochemical CO and H_2 Generation Experiments. The nature and the concentration of the various components used in each experiment are listed in Tables 1-4. The solns. (30 ml) of the compounds (in a round bottomed ca. 60-ml Schlenk tube) were degassed at 0.1 Torr, and a volumetrically measured amount of CO₂ (purity 99.995%) was dissolved in the mixture. Blank experiments were carried out under vacuum in the absence of CO₂. After irradiation, the internal pressure was brought to atmospheric pressure by cooling down the flask in dry ice and by introducing 1M NaOH. The gas contained in the flask was sampled by syringe and analysed by GC.

Preparation of the Complexes. The Ru complexes were prepared according to [62]. [Ru(phen)₂(CN)₂] [63] and $[Co(bpy)_3]^{2+} \cdot Cl_2 \cdot 6H_2O$ [64] were synthetized as described in the lit. Solns. of reduced complexes such as $[Ru(bpy)_3]^+$ [43] or $[Co(bpy)_3]^+$ [18] were prepared coulometrically using a Hg working electrode, a Pt wire as auxiliary electrode, and a SCE as reference. The solns. were deaerated using Ar and transferred by standard *Schlenk* techniques. The reactivity of these reduced species towards CO₂ and H₂O was observed either visually (colour change) or by UV/VIS spectroscopy.

We thank Y. Guilbert for performing the GC/MS analyses, E. Piedmont for help in the determination of the quantum yields, and S. Libs for the analysis of HCOOH by GC.

REFERENCES

- a) D.J. Darensbourg, R.A. Kudaroski, Adv. Organomet. Chem. 1983, 22, 129; b) R. Ziessel, Nouv. J. Chim. 1983, 7, 613; c) D.A. Palmer, R. Van Eldik, Chem. Rev. 1983, 83, 651; d) D. Walther, E. Dinjus, J. Sieler, Z. Chem. 1983, 23, 237; e) A. Behr, Catalysis in C₁ Chem. 1983, 169.
- [2] a) B. Åkermark, in 'Solar Energy-Photochemical Conversion and Storage', Eds. S. Claesson and L. Engström, National Swedish Board for Energy Source Development, NE 1977: 6, 1977, ch. 6; b) 'Organic and Biorganic Chemistry of Carbon Dioxide', Eds. S. Inoue and N. Yamazaki, Kodanska Ltd., Tokyo, Wiley, New York, 1982.

[3] N. Getoff, Z. Naturforsch., B 1962, 17, 87; ibid. 1963, 18, 169.

- [4] S. Tazuke, N. Kitamura, Nature (London) 1978, 275, 301.
- [5] a) J.C. Hemminger, R. Carr, G.A. Somorjai, Chem. Phys. Lett. 1978, 57, 100; b) T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature (London) 1979, 277, 637.
- [6] a) A. Halmann, Nature (London) 1978, 275, 115; b) M. Zafrir, M. Ulman, Y. Zuckerman, M. Halman, J. Electroanal. Chem. 1983, 159, 373; c) I. Taniguchi, B. Aurian-Blajeni, J. O'M. Bockris, J. Electroanal. Chem. 1983, 149, 291, ibid. 1983, 157, 179; d) M. G. Bradley, T. Tysak, D.J. Graves, N.A. Vlachopoulos, J. Chem. Soc., Chem. Commun. 1983, 349; e) K. W. Freeze, D. Canfield, J. Electrochem. Soc. 1984, 131, 2518; f) B.A. Parkinson, P.F. Weaver, Nature (London) 1984, 309, 148; g) S. Ikeda, M. Yoshida, K. Ito, Bull. Chem. Soc. Jpn. 1985, 58, 1353.
- [7] J. M. Lehn, in 'Proceedings of the 8th International Congress on Catalysis', Berlin (West), 2-6 July, 1984, Verlag Chemie, Weinheim, Vol. 1, pp. 63-83.
- [8] a) J.M. Lehn, R. Ziessel, Proc. Natl. Acad. Sci. USA 1982, 79, 701; b) R. Ziessel, Doctorat ès-Sciences, Université Louis Pasteur, Strasbourg, 1982.
- [9] J. Hawecker, J. M. Lehn, R. Ziessel, J. Chem. Soc., Chem. Commun. 1983, 536.
- [10] J. Hawecker, J. M. Lehn, R. Ziessel, J. Chem. Soc., Chem. Commun. 1985, 56.
- [11] F.R. Keene, C. Creutz, N. Sutin, Coord. Chem. Rev. 1985, 64, 247.
- [12] J. Hawecker, J. M. Lehn, R. Ziessel, Nouv. J. Chim. 1983, 7, 271.
- [13] L.G. Sillen, A.E. Martell, 'Stability Constants', The Chemical Society, London, Special publications No. 17 (1964) and No. 25 (1971).
- [14] L. Meites, P. Zuman, 'Electrochemical Data', Wiley-Interscience, New York, 1979, Vol. A.
- [15] P.E. Hoggard, G.B. Porter, J. Am. Chem. Soc. 1978, 100, 1457.
- [16] a) M. Gleria, F. Minto, G. Beggiato, P. Bortolus, J. Chem. Soc., Chem. Commun. 1978, 285; b) R.F. Jones, D.J. Cole-Hamilton, Inorg. Chim. Acta 1981, 53, L3.
- [17] a) J. R. Biackborow, R. J. Daroda, G. Wilkinson, Coord. Chem. Rev. 1982, 43, 17; b) E. Haruki, Japan. Patent 1977, 77203.
- [18] S. Morgel, W. Smith, F.C. Anson, J. Electrochem. Soc. 1978, 125, 241.
- [19] A. H. A. Tinnemans, T. P. M. Koster, D. H. M. W. Thewissen, A. Mackor, Recl. Trav. Chim. Pays-Bas 1984, 103, 288.
- [20] V. Balzani, F. Bolletta, M. T. Gandolfi, M. Maestri, Topics Curr. Chem. 1978, 75, 1 and ref. therein.
- [21] a) N. Alonso Vante, V. Ern, P. Chartier, C.O. Dietrich-Buchecker, D.R. McMillin, P.A. Marnot, J.P. Sauvage, Nouv. J. Chim. 1983, 7, 3; b) C.O. Dietrich-Buchecker, P.A. Marnot, J.P. Sauvage, J.R. Kirchhoff, D.R. McMillin, J. Chem. Soc., Chem. Commun. 1983, 513.
- [22] K. Kalyanasundaram, J. Kiwi, M. Grätzel, Helv. Chim. Acta 1978, 61, 2720.
- [23] D. R. Eaton, S. R. Suart, J. Phys. Chem. 1968, 72, 400.
- [24] M. Wolberg, L. Helmholz, J. Chem. Phys. 1952, 20, 837.
- [25] a) E.J. Kaufmann, J.H. Espenson, J. Am. Chem. Soc. 1977, 99, 7051; b) T.H. Chao, J.H. Espenson, ibid. 1978, 100, 129.
- [26] a) C.V. Krishnan, N. Sutin J. Am. Chem. Soc. 1981, 103, 2141; b) C.V. Krishnan, C. Creutz, D. Mahajan, H.A. Schwarz, N. Sutin, Isr. J. Chem. 1982, 22, 98.
- [27] M. Kirch, J. M. Lehn, J. P. Sauvage, Helv. Chim. Acta 1979, 62, 1345.
- [28] C. Creutz, N. Sutin, Coord. Chem. Rev. 1985, 64, 321.
- [29] C.V. Krishnan, B.S. Brunschwig, C. Creutz, N. Sutin, J. Am. Chem. Soc. 1985, 107, 2005.
- [30] a) T. J. Meyer, Acc. Chem. Res. 1978, 11, 94; b) Q. G. Mulazzani, S. Emmi, P. G. Fuochi, M. Z. Hoffman, M. Venturi, J. Am. Chem. Soc. 1978, 100, 981; c) M. Maestri, M. Grätzel, Ber. Bunsenges. Physik. Chem. 1977, 81, 505; d) C. R. Bock, J. A. Connor, A. R. Gutierrez, T. J. Meyer, D. G. Whitten, B. P. Sullivan, J. K. Nagle, J. Am. Chem. Soc. 1979, 101, 4815; e) K. Kalyanasundaram, Coord. Chem. Rev. 1982, 46, 159.
- [31] C. Creutz, N. Sutin, Inorg. Chem. 1976, 15, 496.
- [32] A. Deronzier, T.J. Meyer, Inorg. Chem. 1980, 19, 2912.
- [33] a) C. Creutz, N. Sutin, J. Am. Chem. Soc., 1976, 98, 6384; b) C. Creutz, Inorg. Chem. 1978, 17, 1046.
- [34] C. Creutz, N. Sutin, B.S. Brunschwig, J. Am. Chem. Soc. 1979, 101, 1297.
- [35] a) B.S. Brunschwig, N. Sutin, Inorg. Chem. 1979, 18, 1731; b) G. Giro, G. Casalbore, P.G. Dimarco, Chem. Phys. Lett. 1981, 71, 476; c) B.S. Brunschwig, N. Sutin, ibid. 1980, 77, 63.
- [36] A. Juris, M. T. Gandolfi, M. F. Manfrin, V. Balzani, J. Am. Chem. Soc. 1976, 98, 1047.
- [37] H.E. Toma, C. Creutz, Inorg. Chem. 1977, 16, 545.
- [38] C.P. Anderson, D.J. Salmon, T.J. Meyer, R.G. Young, J. Am. Chem. Soc. 1977, 99, 1980.
- [39] P.S. Delaive, B.P. Sullivan, T.J. Meyer, D.G. Whitten, J. Am. Chem. Soc. 1979, 101, 4007.

- [40] G. M. Brown, B.S. Brunschwig, C. Creutz, F. F. Endicott, N. Sutin, J. Am. Chem. Soc. 1979, 101, 1298.
- [41] B. Martin, W. R. McWhinnie, G. M. Waind, J. Inorg. Nucl. Chem. 1961, 23, 207.
- [42] A.A. Vloek, Nature (London) 1957, 180, 753.
- [43] H. D. Abruna, A. Y. Teng, G. J. Samuels, T. J. Meyer, J. Am. Chem. Soc. 1979, 101, 6745.
- [44] D.J. Delaive, J.T. Lee, H.W. Sprintschnik, A. Abruna, T.J. Meyer, D.G. Whitten, J. Am. Chem. Soc. 1977, 99, 7095.
- [45] S. F. Chan, M. Chou, C. Creutz, T. Matsubara, N. Sutin, J. Am. Chem. Soc. 1981, 103, 369.
- [46] T.H. Chao, J.H. Espenson, J. Am. Chem. Soc. 1978, 100, 129.
- [47] J. Hawecker, J. M. Lehn, R. Ziessel, in preparation.
- [48] G. La Monica, S. Ceinini, F. Porta, M. Pizzoti, J. Chem. Soc., Dalton Trans. 1976, 1777.
- [49] a) M. G. Bradley, D. A. Roberts, G. L. Geoffroy, J. Am. Chem. Soc. 1981, 103, 379; b) D. R. Roberts, G. L. Geoffroy, M. G. Bradley, J. Organomet. Chem. 1980, 198, C75.
- [50] P.G. Douglas, B.L. Shaw, J. Chem. Soc. A 1969, 1491.
- [51] K. R. Laing, W. R. Roper, J. Chem. Soc. A 1969, 1890.
- [52] B.P. Sullivan, J.V. Caspar, S.R. Johnson, T.J. Meyer, Organometallics 1984, 3, 1241.
- [53] a) R.S. Coffey, J. Chem. Soc., Chem. Commun. 1967, 923; b) D. Forster, G. R. Beck, *ibid.* 1971, 1072; c) J.P. Collin, R. Ruppert, J.P. Sauvage, Nouv. J. Chim. 1985, 9, 395.
- [54] J. Halpern, L. W. Kemp, J. Am. Chem. Soc. 1966, 88, 5147.
- [55] a) S. Gambarotta, F. Avena, C. Floriani, P. F. Zanazzi, J. Am. Chem. Soc. 1982, 104, 5082; b) C. Floriani, Pure Appl. Chem. 1982, 54, 59 and ref. therein.
- [56] J. E. Bercaw, L. Y. Goh, J. Halpern, J. Am. Chem. Soc. 1972, 94, 6534.
- [57] K. Bowman, A.J. Deeming, G.P. Pround, J. Chem. Soc., Dalton Trans. 1985, 857.
- [58] C. F. Barrientos-Penna, A. B. Gilchrist, A. H. Klahn-Oliva, A.J. Lee Hanlan, D. Sutton, Organometallics 1985, 4, 478.
- [59] D. Choudhury, D.J. Cole-Hamilton, J. Chem. Soc., Dalton Trans. 1982, 1885.
- [60] C. Minadakis, R. Sabbah, Thermochim. Acta 1982, 55, 147.
- [61] Handbook of Chemistry and Physics, 62nd ed. 1982, D-70 and D-71.
- [62] J. N. Braddock, T. J. Meyer, J. Am. Chem. Soc. 1973, 95, 3158.
- [63] J. N. Demas, T. F. Turner, G. A. Crosby, Inorg. Chem. 1969, 8, 674.
- [64] F.H. Burstall, R.S. Nyholm, J. Chem. Soc. 1952, 3570.